
Unity Tutorials 8 – Basic Scripting

I – Intro to JavaScript

Object-Oriented Programming
JavaScript is an object-oriented programming language. In programming, an object is a
combination of variables and methods. Object-oriented languages are easy to visualize.
For example, imagine that a car is an object. A car in turn has a number of objects
within it. Cars have four wheel objects. Each wheel object has its own variables such as
size and colour. Another object that a car object contains is its doors. Each door has its
own variables, but only those that are useful to the program. For example, the car may
have a colour variable. This would have a “string” data-type. A string is usually a word
or a sentence. The door may also have a child-lock variable that can either be engaged
or disengaged. This would be a “boolean” data-type, which can only either be true or
false. Let's say the wheels are not objects, but are instead a variable. Let's say that the
wheel variable simply determines the number of wheels. This would be an integer data-
type, which is a number that is not a fraction. The “wheel” variable for a car would
generally have a value of “4”.

Variables
A variable is something within an object that holds a value, or information. As
mentioned above, there are different data-types that a value can have. The most
commonly used in Unity are integers, strings, and booleans. 0 is an example of an
integer, zero is an example of a string, and false is an example of a boolean.

Methods
A method is a set of step-by-step instructions that are to be followed. They are used to
complete specific tasks, generally by manipulating variables. For example, a car object
may have a method called “accelerate”. This method would follow a set of steps that
eventually end with the wheel objects spinning faster and faster.

Declaring and Defining Variables
In order for a method to use a variable it must first be declared and defined. Declaring
a variable basically tells the rest of the program that it exist. Defining a variable is the
act of assigning a value to it. If a variable is not defined it will have a value of “null”.
Look at the JavaScript statement below.

var colour = green;

The first part, “var”, is necessary for declaring variables. The second part, “colour” is
the name of the variable. Each variable (and method) must have a name that will be

Unity Tutorials 8 – Basic Scripting

used to refer to it. The “=” means that we are also defining the variable. “green” is the
string value of this variable. The “;” means the end of the statement. If the statement
were

var colour;

then “colour” would be a new variable with a value of “null”. If the original statement
was in Java form (as opposed to JavaScript) it would look like this:

String colour = green;

This is because in Java it is also necessary to declare the data-type. JavaScript
automatically assigns the most appropriate data-type.

Classes
A class is basically a large method used to create objects. It begins by declaring the
object's variables then lists different methods (often know as “functions” when they are
within a class) that an object can perform. Consider the statement below.

Car vehicle1 = new Car();

This is how an object is created within a program. You'll notice that it is much like
declaring and defining a variable. The “Car” at the beginning means that vehicle1 is a
“Car” object. In order for this to work, there needs to be a class called “Car”
somewhere within the program. “vehicle1” is the name of the car. The “=” denotes that
we are assigning a value to this Car object. “new Car()” is calling (telling the
programming to find and initiate) the method for creating a car object.

Unity Tutorials 8 – Basic Scripting

II – Health Bars

Global Variables
A global variable can be accessed by any part of a program. They are generally frowned
upon because they can cause trouble if the programmer uses the same name for other
variables. We will be using global variables anyway for simplicity's sake.

Right-click in your Assets and go to “Create” and “Javascript”. Rename it as
“globalVariables”.

Now double-click on your script to open it
in Unity's “MonoDevelop” program.

Unity Tutorials 8 – Basic Scripting

Erase everything except the first line that says “#pragma strict”.

Now type the following:

Technically each statement doesn't need to be on a new line. This is for organization
purposes.

Press the CTRL and S keys simultaneously or click on “File” then “Save” to save.

In this script we have declared and defined three variables. In JavaScript the “var”
denotes that we are declaring a variable, then we name it, then we assign a starting
value, and finally the “;” declares the end of the statement. The “static” at the beginning
is required for this variable to be accessed by other scripts. A static variable is one that
will last for the entirety of the program.

Assigning Scripts
We are now going to assign a class containing the remainder of our health bar-related
methods to the obstacles. Generally we would split them up between different classes in
order to better organize our script and minimize redundancy. For example, the enemies
could have a script that detects collision then calls the method that takes care of health
bar depletion from another class. This way we won't have to have the entire script in
each enemy and it would only need to exist once. For simplicity's sake though we will
not be doing this.

Create a new Javascript code and name it “obstacleCollision”. Double-click it.

Before doing anything, go to your RawImage (1) and enter “Debug” mode in the
inspector.

Unity Tutorials 8 – Basic Scripting

Unity sometimes uses different attributes in the normal inspector in order to simplify
editing within Unity. In order to create a proper script we need to know the actual
attributes that Unity is using by entering “Debug” mode. Anchor Max is the value we
will be modifying in order to resize the health bar.

After playing with the Anchor Max we can find that the smallest it goes before
disappearing is approximately 0.74.

Now open MonoDevelop and type the following:

Unity Tutorials 8 – Basic Scripting

Let's go over this code line by line.

3. Here we are declaring a boolean called “collided”. This will be used to determine
whether or not the player is colliding with the obstacle.
4. The healthBar variable refers to the RawImage (1) GameObject. Obviously Unity
cannot tell exactly what GameObject “healthBar” is referring to using this script alone.
We will assign our RawImage (1) to this variable within Unity.
6. This is the function that will be activated if the FPSController enters a trigger box
collider of the object that this script is assigned to. Notice how we use a bracket at the
end instead of a semicolon. Anything inside the brackets are part of the function. You
can see by the closing bracket on line 13 that the function ends there.
7. Two slashes turn an entire line into a comment. Comments are used to leave notes
within a code. /*Anything between a slash and an asterisk will also be a comment. This
method is used to make a comment span multiple lines*/.
8. This is the beginning of an “if” statement. Anything within this statement's brackets
will only be executed if the described conditions are met. You can see that the conditions

Unity Tutorials 8 – Basic Scripting

are ((other.gameObject.tag =="Player") && (collided==false)). The && means “and”
while a || means or. Because we are using && both conditions need to be met. If || was
used instead only one of the conditions would need to be met. “other.gameObject.tag” is
the tag that the colliding object has. We are going to change the FPSController's tag to
“Player”. This script will also only run if collided is equal to false. This way it will not
run over and over as long as the player is within the obstacle's box collider.
9. Collided is set to true so that both conditions for this function to run are no longer
met. Notice that only one = is used here. “==” is used for booleans. It means “is already
equal to”. “=” is used to assign values to a variable. It means “is now equal to”.
10. We need to use globalVariables.health in order to reach our “health” variable in the
“globalVariables” script. In this line “health” is now equal to itself, minus 10.
11. The function “healthBarChange” below is called in order to make the appropriate
changes to RawImage (1).
15. This is the start of our “OnTriggerExit” function. In this function “collided” is set
back to false so that “OnTriggerEnter” will be fully executed again if the player
approaches the obstacle again.
24. healthBar.anchorMax means that we are changing the “Anchor Max” variable of the
“healthBar” object variable we defined at the beginning of this code. You do not need to
understand “Vector2” at the moment, but take a look at the values we used. The first is
(0.74 + (globalVariables.health/384.615). We use 0.74 because that is the lowest value it
can have before disappearing. Let's say “health” is at 100. We use 384.615 because
100/384.615 is equal to 1, the max value that we want the Anchor Max to have. (1-0.74
= 0.26; 100/0.26 = 384.615). The second value, 1, is the Y Anchor Max. We only want to
change the X Anchor Max so we leave it at 1.

Finally, notice that we use decimals throughout the code. This is to prevent Unity from
assigning integer values (whole numbers) to the Anchor Max as opposed to floats
(fractional numbers).

Now save the code and return to Unity. Create a cube and give it a new Box Collider.
Turn on “Is Trigger” and make the box slightly larger using the Size fields if you are still
in “Debug” mode. Otherwise click the “Edit Trigger” button.

Unity Tutorials 8 – Basic Scripting

Now click and drag your obstacleCollision
script onto the object either in the hierarchy
or scene view. It will appear in the inspector.

Set the “Health Bar” field to “RawImage
(1)”.

Open your FPSController and change the
“Tag” to “Player”.

Now create a prefab out of your obstacle and place them throughout the scene.

Unity Tutorials 8 – Basic Scripting

You may need to individually assign the “RawImage (1)” object to each obstacle.

Unity Tutorials 8 – Basic Scripting

III – Lives Count

Create a new Javascript called “LivesCount” and open it in MonoDevelop.

Type the following:

Here we are creating a GUI label that is automatically updated whenever the “lives”
variable updates.

You will need to add this script to the livesCounter object by clicking and dragging it
onto it.

Now make the following changes to “obstacleCollision.js”:

Unity Tutorials 8 – Basic Scripting

Here we added to the HealthBarChange function to make it detect when the player's
health reaches 0. It then calls a new function, “LivesChange”, which decreases the
player's lives count both in the globalVariables class and in the LivesCount class. As
stated before, when the LivesCount's “lives” variable changes the GUI will
automatically update. HealthBarChange will also replenish the player's health.

Try playing your scene and running into obstacles until your health runs out. You can
also change how much health the player loses to 20.0 to speed up the process.

We now need to add a “game over” function. Add the following to “obstacleCollision”:

Unity Tutorials 8 – Basic Scripting

You will also need to add to the beginning.

Now before you can load another scene you will need to make some adjustments that
will be covered in greater detail in the next tutorial.

Open your mainMenu scene and click “File” and “Build Settings”.

Unity Tutorials 8 – Basic Scripting

Now click “Add Open Scenes”. Open your
level and do the same thing. You can then test
your code.

Unity Tutorials 8 – Basic Scripting

IV – Coin Count

We are now going to make a code that is very similar to the last one. First make a sphere
or capsule object and shape it into a coin.

Create a Javascript file and call it “CoinCollect”. Apply it to the capsule and open it up
in MonoDevelop.

Type this and save it:

Unity Tutorials 8 – Basic Scripting

Give your coin a Box Collider and check “Is Trigger”.

Make a prefab called “coin” and spread 10 of them around your map.

Now it's finally time to add the coin counter.

As before, create an empty GameObject and create a new Javascript. Call it
“CoinCount” and add it to the GameObject. Call this object “coinCounter”.

You can copy and paste your code from LivesCount and change it as such:

NOTE: The Quit() feature only works during a build and will not actually work while
testing in the Game View.

Unity Tutorials 8 – Basic Scripting

V – Buttons

The final step is to add functionality to the “Play” button in the main menu. Start by
opening your mainMenu scene.

Create a Javascript called “playGame”.

If you named your scene something else you
will need to adjust the script accordingly.

Now click on your button and make sure the
inspector is in “Normal” mode and not
“Debug” mode. Click the “+” in the On Click
() menu.

It's hard to see, but there is a field here that
says None (Object). You will need to first
apply the script to another object and apply that
object to this field. Thankfully, there should be an object in your scene called
“EventSystem”. Drag your playGame script onto this object then apply this object to the
field under On Click ().

Unity Tutorials 8 – Basic Scripting

Now click the “No
Function” box and
click on “playGame”
and “StartGame ()”.

