WIPEOUT

[image: image1.png]

THE ENGINEERING OF AN OTHELLO PROGRAM

Robin Nicholl - Comp 3653 Software Engineering - Software Project

Written Report (Due: Monday, March 23rd, 1998)

Matthew J. Doucette - 100019062

All information contained in this document, including but not limited to, titles, names, text, documentation, specifications, diagrams, and source code, are copyright (1998 by Matthew Joseph Doucette, with exception to the computer generated ray traced Othello board on the cover page. All rights reserved. No part of this work covered by the copyright herein may be reproduced or used in any form or by any means - graphic, electronic, or mechanical, including but not limited to, photocopying, recording, taping, or information storage and retrieval systems - without the explicit written consent of Matthew Joseph Doucette.

There are absolutely no exceptions.

Table of Contents

2Table of Contents

Abstract
3
Introduction
3
A Technical and Detailed Presentation
3
of the Content of the Paper
3
Schedule
3
Game Research
4
Main Screen Design:
4
Quick Graphic Implementation
4
Board Data Structure Design
4
Design/Implement “Draw Board” procedure
8
Design/Implement “Find Legal Moves” Procedure
8
Design/Implement “Make Move” procedure
9
Design/Implement User Interface
9
Game Engine Design/Research
9
Implement Simple Evaluation Function/One Ply Depth First Search
9
Implement Depth First Search with Alpha-Beta Pruning for a Given Depth
10
Design/Implement Advanced Evaluation Function
11
Enhancing Game Engine/Testing WipeOut’s Intelligence
12
Rating WipeOut Against Real Othello Players
14
Conclusion
15
Appendix
15
Bibliography
16

Abstract

This paper is a report on Project WipeOut, the engineering of WipeOut, my Othello program. The main goal of the project was to create the strongest Othello playing computer program within the time constraints. WipeOut was designed, tested, and implemented over a time period of 30 hours for my Comp 3653 Software Engineering course at Acadia University. Software engineering techniques from the course helped me accomplish the project. WipeOut was designed in a procedural language, Turbo Pascal, for performance. Code was separated into modules, as functions and procedures, to simplify future development and upgrading such as the implementation of a stronger game engine and added sharper graphics and animation.

Introduction

Discussed in this report were the steps taken to engineer WipeOut. Everything from creating the schedule to implementation and testing is included. All small details have been omitted. Their sheer number would have increased the size of this paper tenfold.

A Technical and Detailed Presentation

of the Content of the Paper

Schedule

The first step in creating WipeOut was designing a schedule. It was a rough approximation of what I though was necessary to create WipeOut before I could start work on it. It was designed for a 30 hour total time limit, split up into 9 weeks of approximately 3 to 4 hours of work per week. This took approximately 2 hours to complete. The following sections are the remaining work and follow the original schedule unless otherwise noted:

Game Research

The official Othello rules were research on the internet from a multiple of reliable sources. One such source of information was the International Internet Othello Association (http://www.iioa.org/). Information about the game, such as the starting position, legal moves, time limits, and special case situations like null moves and premature endings, was obtained from these sites. This took approximately 2 or 3 hours to complete.

Main Screen Design:

A rough draft of the main screen was designed. This is where the game play occurs. The title of the program, Othello board, score, time, credits, and miscellaneous game engine information was placed and sized onto the draft screen. This took approximately 1 hour to complete.

Quick Graphic Implementation

The drawing of a temporary Othello board with pieces on the screen was coded. The main screen design specifications were followed according. This was labeled temporary because a low quality graphical display of the board was all that was necessary to allow the coding the game engine to start. More realistic graphics and animations could be implemented afterwards. As the graphics was not the main goal of the project, it was unlikely that the graphics would be updated within the 30 hour time limit anyway. Surprisingly, the 640x480 resolution in 16 colors with official board and piece colors appears satisfactory for the final product. This took approximately 1 hour to complete.

Board Data Structure Design

The board data structure was designed. This was an addition to the original schedule. Upon starting to design “Find Legal Moves” it became apparent that the data structure for the board had to be designed first. This was not listed in the original schedule as it was not determined to be a major part of the project at the time. This was very short sighted indeed. The board data structure not only had to be designed now, but it had to be designed for efficiency now. If an efficient design was not designed at first, and left to be implemented afterwards, it would create the problem of having to modify the data structure and all of the affected code as well. That would be a drastic change to all of the engine code which would guarantee countless errors and extra hours of work in debugging. Foreseeing that problem, the board data structure was designed for efficiency at this point.

Designing an efficient board data structure was not an easy problem. How do you design the most efficient data structure before any code has been written and well before any testing can be performed? The benefits or downfalls of a proper or improper data structure would only be apparent once the game engine is tested for speed and intelligence. Also, with this being my first attempt at an AI board game program, there was no way of knowing if the data structure I was choosing was appropriate. Here are the choices I made for designing the board data structure with the reasons:

1. I chose to store the board as a one dimensional array (see Diagram 1). This:

· sped up index calculation of array, and thus sped up array access:

One Dimensional Array:

index = x, where x = 0..63,

no calculation required.

Two Dimensional Array:

index = x + (y * 8), where x = 0..7 and y = 0..7,

one addition and one multiplication required.
2. I chose the values in the board array to be 0, 1, 2, and 3, for a black stone, a white stone, an empty square, and a possible legal move, respectively. This:

· allowed a fast and simple calculation of opposite side:

other_side=1 - current_side
· sped up index calculation for a pre-calculated look-up table of all 6561 possible edge positions, a future enhancement:

Index for an edge consisting of board positions from A..H:

edge_table_index
=
board[A] * 30 +

board[B] * 31 +

board[C] * 32 +

board[D] * 33 +

board[E] * 34 +

board[F] * 35 +

board[G] * 36 +

board[H] * 37

 =
0..6560

 =
0..38
· pruned the amount of moves searched when finding legal moves by only checking moves that are possibly legal. Possible moves are empty squares that are adjacent to non-empty squares. Possible moves are not all legal moves but contain all legal moves (see Diagram 2). Updating possible moves is easy. Every time a move is made, all empty adjacent squares will be updated to a possible legal move.

3. I chose to modify the board array to a bigger 10x10 array which represents an 8x8 board with an outside border (see Diagram 3). Also, another value, 4, was introduced to indicate array positions that are off the board. This:

· sped up legal move checking by removing ‘off the board’ and ‘wrap around’ checks when incrementing a search ray. A simple check of board[current_position]=4? tells whether the current position is on or off the board. (Actually, the value 4 only ever used to initialize the border as the border due to this optimization: A search ray is terminated after a series of opponent colored stones and then a stone of your color. All that matters is whether the last stone is your color or not, not whether it is a border, an empty square, etc.)
4. I chose to modify the board array again into a 9x10 + 1 array (see Diagram 4). This:

· is the 10x10 array minus the right border. This still held the same optimization features of the full 10x10 array by using the left border as both left and right borders in calculations.

· used less memory which sped up copying of board and passing board into procedures.

Designing the board data structure took approximately 1 hour.

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63

Diagram 1: One Dimensional Indexed Array Of 8x8 Othello Board.

(

(
W
B

B
W
(

(

Diagram 2: Possible Moves In Starting Position (Shaded Area).

Black Circles Indicate Actual Legal Moves.

Searching The Shaded Area Finds All Legal Moves.

‘B’ Indicates Black Stone And ‘W’ Indicates White Stone

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99

Diagram 3: One Dimensional Array With Outside Border.

White Area Indicates 8x8 Othello Board. Shaded Area Indicates Outside Border.
0
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89

90

Diagram 4: One Dimensional Array With Optimized Outside Border.

White Area Indicates 8x8 Othello Board. Shaded Area Indicates Outside Border.

Square 90 Is Required For A Search Ray In The Down-Right Direction From Square 80.

Design/Implement “Draw Board” procedure

The “Draw Board” procedure was designed and implemented. It receives a board position and draws it on the screen along with other information such as legal moves and debugging information. Some of the code from the “Quick Graphic Implementation” was moved into this procedure. “Draw Board” allows the visual testing of the “Find Legal Moves” and “Make Move” procedures along with the board data structure. This took approximately 1 hour to complete.

Design/Implement “Find Legal Moves” Procedure

The “Find Legal Moves” procedure was designed and implemented. It receives a board position and returns the legal moves of that board position. The design was relatively simple. It shoots out search rays in all eight directions from all possible legal move squares. Some early optimizations were incorporated. For example, once it is determined that a move flips stones in one direction, then that move is legal, and it is pointless to check and if it flips stones in other directions. Traversing the eight directions two dimensionally in the one dimensional array was easy using a table of increment values, (see Diagram 5). This took approximately 1 hour to complete.

-10
-9
-8

-1
0
1

+8
+9
+10

Diagram 5: 8 Direction Search Ray Increments For Diagram 4 Array.
Values Are For Moving One Square In All 8 Directions From The Center Square.
Design/Implement “Make Move” procedure

The “Make Move” procedure was designed and implemented. It receives a reference to a board position and a move and updates the board position with the move. The move was assumed legal to increase efficiency. “Find Legal Moves” took care of illegal moves. This was rather elementary as I already had implemented search ray programming in the “Find Legal Moves” procedure. This took approximately 1 hour to complete.

Design/Implement User Interface

The user interface was designed and implemented. This was left basic for simplicity. Text output was used at the beginning of the program to ask the user to play black, play white, chose human versus human, or chose computer versus computer. During game play the arrow keys move a graphic cursor on the board and the enter key selects a move. Pressing “ESC” at any time during the game quits. This took approximately 1 hour to complete.

At this point all the game engine code was tested in a two-player game. The computer was designed to play random legal moves. No bugs were found as testing had already been performed on all the separate modules before. This took approximately 1 hour to complete.

Game Engine Design/Research

Othello game engine designs were research. At this point, all that was left was to make the computer think, which was the primary concern of Project WipeOut. Before WipeOut’s game engine could be designed, I had to acquire knowledge of effective Othello game engine techniques and optimizations to design the code for their implementation.. Even if time restrictions would not allow the implementation of more advanced methods, the knowledge of them is important considering future upgrades and improvements of WipeOut. One notable source of information came from a program called Logistello, the strongest playing Othello entity on the planet. I had already written a report on the engineering of Logistello’s evaluation function and became familiar with all its techniques. Not counting the report on Logistello, this took approximately 2 hours to complete.

Implement Simple Evaluation Function/One Ply Depth First Search

A simple evaluation function with a 1 ply depth first search was implemented. There was no design for the evaluation function as it was nothing more than counting the pieces on the board and returning a value in the range -64..64. This allowed the testing of all code in “Find Legal Moves” and “Make Move” procedures in a 1-ply search, testing all game engine code so far. The simple evaluation function provided an easy test because I could count the difference in pieces on the board and check to see if the values were correct or not. This took approximately 2 to 3 hours to complete.

Also at this point the graphics were slightly optimized which was not in the original schedule. Turbo Pascal’s graphics code was too slow in 640x480 16 color standard VGA so I modified the “Draw Board” procedure to update changes on the board instead of drawing the entire board every time. This was more complicated than it seems as debugging information not shown to the end user had to be coded to update as well. This improvement was a necessity as the slow graphics was slowing down the testing. This took approximately 1 hour to complete.

Implement Depth First Search with Alpha-Beta Pruning for a Given Depth

The depth first search was implemented with alpha-beta pruning. This was a deviation off the original schedule as alpha-beta pruning was a time permitting consideration. I changed my mind due to its importance. The coding for the alpha-beta search had already been started in the previous 1-ply depth first search code. All that was missing was recursion calls and the alpha-beta cut off, which was implemented in about 0.5 hours with exception to null move handling discussed next.

Implementing null moves was the hardest part of the alpha-beta search as it did not follow the ‘standard’ alpha-beta search of alternating turns. A null move occurs whenever a player does not have a legal move and must pass the turn to the other player. This causes a double-move. The problem with double-moves is that they should only count as 1 ply as they are contained in one turn. Without modifying the code it counts as 3 ply, 2 plys for the double-move and 1 ply for the null move (see Diagram 6). The solution to this problem is to increase the depth by one after the null move, instead of the normal decrement.

Another problem with null moves is that if the previous move was null then the game is over because neither side has a legal move. If the double null move is not seen then the null move search extension will extend the current line of play will be extended infinitely. The solution to this problem is to set a boolean null move variable to be true whenever a null move occurs and check it when a null move occurs. If it is set then the game is over. Also, the null move variable must be set to false whenever a null move does not occur to clear it.

The entire alpha-beta search with proper null move and game over handling was implemented and tested with the simple evaluation function in approximately 4 hours.

Diagram 6: Null Move Problem.

All Leaf Nodes Should Be The Same Depth As They Are All The Third Turn In The Tree.

White’s Left Move Is 3 Ply. White’s Right Move Is 1 Ply.
Design/Implement Advanced Evaluation Function

The advanced evaluation function was designed and implemented. I had obtained enough information through research to decided what would best fit a 30 hour project with approximately 8 hours devoted to the implementation of the evaluation function (4 hours specifically for the evaluation function and 4 hours for general game engine improvements).

The final objective of the game, obtaining the largest amount of stones your own color, or the simple evaluation function that I already have implemented, was rejected. It fails miserably under testing as it attempts obtain as many stones its own color as possible, ignoring any positional value. It is known as the greedy algorithm for good reason. For example, it would rather give up all four stable corner stones to obtain a large amount of unstable mid-board stones only to lose them all in the end.

A more proper objective for the opening game, striving for corner positions and edges, was my final choice for implementation. This was very easy to implement by assigning every position a value. The stones could be counted as in the greedy algorithm, except using a pre-stored position value instead of the value 1 for each stone.

There was one other consideration for an evaluation function, mobility. It is the primary concern in the opening game for the world’s strongest Othello playing entities (both computers and humans). This was rejected due to time constraints because mobility requires the assistance of a positional evaluation for edges. This meant that mobility would be additional work on top of my positional evaluation, as opposed to a direct replacement. Normally, an edge calculation is implemented to assist the mobility evaluation function. That would have required look-up edge tables to be constructed, and thus the design and implementation of an additional program to create the edge table values. Although mobility was rejected, it was still incorporated into the design for a future enhancement as noted in the designing of the board data structure.

Once I had decided on using a positional evaluation, the only problem left was to figure out what the position values should be. I received a suggestion from an unknown Internet Othello game source (see Diagram 7).

100
-20
10
5
5
10
-20
100

-20
-50
-2
-2
-2
-2
-50
-20

10
-2
-1
-1
-1
-1
-2
10

5
-2
-1
-1
-1
-1
-2
5

5
-2
-1
-1
-1
-1
-2
5

10
-2
-1
-1
-1
-1
-2
10

-20
-50
-2
-2
-2
-2
-50
-20

100
-20
10
5
5
10
-20
100

Diagram 7: Position Values.

As you can see, the corners are the highest value at 100 points and the X squares are the lowest value at -50 points, and thus they are the best and worst positional moves in the game. The reason for the -50 and -20 values of the X and C squares is that they potentially allow the opponent to obtain the corner by flipping a stone you placed there. Also, it denies you from ever obtaining the corner from that direction for the rest of the game. (To place a stone on a specific square, it is necessary to have an opponent’s stone adjacent to that square. Therefore you should not place a stone adjacent to a square that you do not want your opponent to take.) Also it is interesting to note that the low values of these squares forces the computer to avoid playing there and force its opponent to play there. For example, the opponent playing on the X square is seen as +50 points.

This took approximately 1 hour to complete.

Enhancing Game Engine/Testing WipeOut’s Intelligence

Testing and game engine enhancements were conducted. This was a slight deviation from the original schedule as testing was to be performed before enhancements. However, it made more sense to test and enhance the game engine at the same time. I challenged WipeOut with a search depth of 5 ply and perfect end game play at 10 empty squares. Out of 5 games I could only beat it once. The advanced evaluation function played much better than the greedy algorithm. It was necessary to really concentrate to beat it. Little did I know at the time that I just played my last victorious game against WipeOut.

At this point I optimized the end game play by using an empty square count which removed the extra 2 ply required to see the double null moves. I challenged WipeOut again in two games with a search depth of 6 ply. Defeating me both times, once by 62, WipeOut seen a win by 54 with 19 empty squares, showing off a selectively searched forced win.

Next, I tested WipeOut against its first victim, Jonathan Calnen, in approximately 5 or 6 games with a search depth of 5 ply. WipeOut defeated him in every game. The first was an amazing 63-1 win (by 62). The others were all wins by over 40.

The next improvement was a 1 ply search extension was implemented for forced moves. Extending forced moves, like null moves, helps WipeOut see forced lines of play beyond the normal search depth. This resemebles a Chess game where a King is being checked repeatedly. A forced move only extends the search tree by one node, so the search extension is unnoticeable by its extended search time. I challenged WipeOut again with a search depth of 6 ply. WipeOut defeated me by 54, 40, 34, and 58. In the last game, WipeOut seen a win by at least 50 with 23 empty squares due to the selective search extensions of combined forced and null moves.

Satisfied with enough error checking I removed it. WipeOut could calculate 104,000 positions per second in the middle game and 75,000 positions per second end game on my AMD K6 200 MHz MMX processor. Upon realizing that white has the advantage by moving second, unlike the game of Chess, I challenged WipeOut again but I played white. Until this time I had been challenging WipeOut playing black. WipeOut still defeated me in every game by 38, 10, 48, 48, and 14. Amazing I came much closer to a win in two games losing by only 10 and 14 points. Also, in the last game, WipeOut saw a lose by at least 26 assuming perfect play. I did not convert on the victory and lost by 14, but, I could have won. This shows that WipeOut was not undefeatable and also shows the power of the perfect end game. In hindsight, I should have devoted time to design and implement a separate end game specific search to capitalize on that. (World-class Othello programs normally calculate the end game 4 times faster than their middle game. WipeOut’s end game is slower than its middle game. This proves that a separate end game specific optimized algorithm should be designed and implemented.)

Iterative deepening was next implemented due to shrinking search tree size as the game progresses. If a move took under a certain amount of time then the depth was increased and the move was re-calculated. If a move took over a certain amount of time then the depth was decreased for the next move.

Letting WipeOut challenge itself proved that there was a problem in the positional values. The problem was that they were static. Once a corner was taken, regardless of who took it, the X and C squares adjacent to that corner were good positions to have. The positional evaluation kept the large negative values telling WipeOut that those squares are still bad. WipeOut made drastic mistakes such as allowing the opponent to grab all 6 middle squares of an edge It was satisfied with only the 2 corners which defeated the purpose of having them. I decided to negate the values of the X and C squares once the adjacent corner to them were occupied (see diagram 8). It should be noted that the negation must be performed during the search and not after the corner move has actually been made in the game.

20

20

20
50

50
20

20
50

50
20

20

20

Diagram 8: Changed Positional Values Once an Adjacent Corner is Taken.

All the testing and enhancements were deemed completed as time was running out. This took approximately 7 hours to complete. WipeOut was now finished for good. Only very small miscellaneous changes were made here on.

Rating WipeOut Against Real Othello Players

The final version of WipeOut was tested and rating against experienced Othello players on PlaySite (http:\\www.playsite.com\). Approximately 30 unrecorded games were played. At the end of testing WipeOut had obtained a rating of 1861, ranking it in the highest class possible (see Diagram 9). WipeOut only lost to two people. Both the winners were rated over 2000, one of them 2102, the highest rated player I saw. Its best victory was a 58-6 win (by 52) over McCullock rated at 2035. It is important to note that WipeOut’s rating was not maximized and would be pushed higher with more testing.

1-1427
1428-1515
1516-1629
1630-1746
1747+
Unrated

Green
Blue
Magenta
Orange
Red
Black

Diagram 9: PlaySite’s Othello Ratings.

WipeOut Obtained A Red Rating Of 1861

Conclusion

WipeOut was a complete success, accomplishing all of the project’s original goals. It surpassed my expectations of a 1800 rating on PlaySite and it has only lost to two top ranked Othello players. With many optimizations not yet implemented it already calculates over 100,000 positions per second with perfect end game play with 11 empty squares on my AMD K6 200 MHz MMX processor. At almost 3,000 lines of code, it contained surprisingly few bugs due to extensive testing on each modules separately as they were implemented. I learned a lot about artificial intelligence programming and software engineering during WipeOut’s development. It is important to note that although performance was the primary concern during development, (as opposed to code clarity and design), software engineering techniques allowed me to develop WipeOut properly and efficienctly.

Appendix

Board Position.
A board position in WipeOut stores the pieces, whose side it is to move, the amount of empty squares, the amount of possible legal move, and if the last move made was null.

C-Square.
There are eight C-squares on an Othello board. They are at positions a2, a7, b1, b8, g1, g8, h2, and h7 on an Othello (or chess) board. They are special because of their horizontal and vertical adjacency to the corner position.

Mobility.
The more moves that you are able to choose from, the more mobility you have. Also known as Current Mobility.

Othello.
Othello, also known as Reversi, is a two-person zero sum perfect information game played on an 8x8 board with 64 pieces called stones. The stones are colored black on one side and white on the other. One player plays black stones and moves first, and the other plays white. Every move must reverse at least one of the other player’s stones. Stones become reversed if they are in-between the stone just played and any other stones of the current player’s color. If there are no possible moves that reverse the other player’s stones, then the player must pass. If there are no possible moves for either side then the game is over. The player with the most pieces of their color at the end wins.

Search Ray.
A search ray is a ray traced along the board in 1 out of 8 directions from a board position that is being tested to see if it a legal move or not. The position is a legal move if 1 of the 8 search rays performed on the position passes through one or more opponent stones ending with a stone of your color.

Stable Stone.
A stone that can never be flipped. For example, a corner stone is always stable. Stones in all other positions are unstable but may become stable as the board fills up.

X-Square.
There are four X-squares on an Othello board. They are at positions b2, b7, g2, and g7 on an Othello (or chess) board. They are special because of their diagonal adjacency to the corner position.

Bibliography

 “An Evaluation Function for Othello Based on Statistics”, Michael Buro, NEC Research Institute, Technical Report #31 (1997)

PAGE
16

